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A B S T R A C T
This report delves into the emerging domain of contrastive learning, a powerful paradigm in deep
learning that focuses on distinguishing between positive and negative examples to extract feature-
rich representations of input data. An introduction to general representation learning is given,
emphasizing its pivotal role in leveraging massive neural networks and overcoming data bottlenecks.
We then introduce contrastive learning, and give an overview of several key areas of research in
this field: the development of loss functions to effectively facilitate this learning approach; the
strategies for generating data suitable for contrastive learning and the crucial role and challenges
of utilizing negative examples, along with proposed solutions to these challenges. Finally, we study
three applications of contrastive learning in creating state-of-the-art models. Through exploring these
topics, this study aims to delineate the current advancements and applications of contrastive learning,
providing a clear insight into its significance and potential for future exploration in the field of machine
learning.

1. Introduction
In recent years, contrastive learning has emerged as

a powerful paradigm in the field of deep learning. This
approach, rooted in the fundamental idea of learning by con-
trasting positive and negative examples, has demonstrated
remarkable success for learning feature-rich representations
of input data across different modalities like image, audio,
video or text. Further, it is used to build embeddings in met-
ric spaces where a given notion of similarity has semantic
meaning for humans.

The purpose of this text is to provide an introduction to
the state of the art of the field of contrastive learning, as well
as some of the most important topics within it.

In section 2 an introductory overview of representation
learning is given, with a discussion on its advantages and
disadvantages. Section 3 introduces contrastive learning,
and establishes some notation and basic concepts for the rest
of the text. Section 4 dives into the loss functions that are
used in contrastive learning. Another important topic is how
to generate data for contrastive learning, treated in section 5.
In section 6, the topics of utilizing negative examples for
learning is discussed in-depth. Finally, three state-of-the-art
papers are explained in more detail in section 7.

2. Representation learning
One of the fundamental ideas of deep learning is the

composition of transformations (layers). The output of each
layer of the neural network can be seen as a different view
or representation of the input data. Representation learn-
ing refers to the process of automatically discovering and
extracting meaningful features or representations from the
input data.

For classification or regression tasks, a final prediction
head is added to the last layer of the neural network. After
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training, one expects that this final layer of the network pro-
duces a representation of the data with meaningful features
for the learned task.

The trend in recent years has been to train massive
neural networks to learn very general representations of the
input data, so that are useful for many different tasks. These
models are trained using a complex pretext task. By changing
the final head and maintaining the rest of the parameters,
the model can later be fine-tuned to perform a different
task, usually called downstream task. The process of pre-
training with a different task is also called transfer learning.
Contrastive learning has emerged as one of the most popular
techniques for pre-training such models.
2.1. Why representation learning?

It is a natural question to wonder why bother with
representation learning, instead of directly training for the
downstream task. It has several advantages:

• For some downstream tasks there is not enough data,
specially to train massive neural networks. Pretext
tasks usually allow us to generate massive amounts
of training data without effort. If the learned rep-
resentation includes features that are useful for the
downstream task, fine-tuning with just a few exam-
ples should be enough to achieve good results. Over-
coming the training data bottleneck has allowed re-
searchers to push model sizes and obtain state-of-the-
art results for many tasks. This is the case of massive
Transformer architectures like BERT Devlin, Chang,
Lee and Toutanova (2019).

• Training massive networks requires incredible com-
pute and energy resources, so much so that very few
people can afford to train them. The appearance of
open source models like BERT Devlin et al. (2019)
and transfer learning has allowed many people to be
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able to access massive models. This is because fine-
tuning while freezing the parameters of the pre-trained
encoder requires much fewer resources.

• For downstream tasks where there is little or poor data,
it is likely for models to learn spurious correlations to
make good predictions. Due to the amount of diverse
data and complexity of pretext tasks, we expect the
model to have a general understanding of the un-
derlying distribution of the input data, and not learn
spurious correlations. Further, we also hope the fine-
tuned model will generalize better than models just
trained on the downstream task. It should be noted,
however, that it is possible to worsen generalization
during fine-tuning.

• They exhibit zero-shot capabilities. Large generative
language models like GPT can perform a wide va-
riety of zero-shot tasks, like classification. They ob-
tain even better performance with few-shot learn-
ing, providing a few examples of the task in the
input context (Brown, Mann, Ryder, Subbiah, Ka-
plan, Dhariwal, Neelakantan, Shyam, Sastry, Askell,
Agarwal, Herbert-Voss, Krueger, Henighan, Child,
Ramesh, Ziegler, Wu, Winter, Hesse, Chen, Sigler,
Litwin, Gray, Chess, Clark, Berner, McCandlish, Rad-
ford, Sutskever and Amodei (2020)). CLIP (Radford,
Kim, Hallacy, Ramesh, Goh, Agarwal, Sastry, Askell,
Mishkin, Clark, Krueger and Sutskever (2021)), a
model trained to learn which text caption best de-
scribes an image, can be used in arbitrary classifi-
cation tasks by using as caption a description of the
label.

Representation learning also has its disadvantages. First,
the amounts of compute and energy required for training are
enormous, and few people have access to such resources.
Second, zero-shot performance is not that great of an ad-
vantage, as it often produces much worse performance than
specialized models for a given task, at least without fine-
tuning.
2.2. Evaluation of representation learning models

Since this work treats contrastive learning in the context
of representation learning, the topic of evaluation should be
addressed. Different techniques for representation learning
use different pretext tasks, which means that the perfor-
mance on these tasks is not a good way to evaluate them.
We find two desirable conditions for representations. First,
they should perform well for a particular downstream task
of our interest. Second, we would like them be general and
applicable to many problems without a great need of fine-
tuning. Thus, the standard way to evaluate these methods
will be to test the models on different downstream tasks.

3. Contrastive learning: basic concepts
Roughly speaking, in contrastive learning a vector rep-

resentation of the input data is learned by comparing and

contrasting different examples. For instances that we deem
similar in some sense, we want their vector representation
to be close according to some metric. On the other hand,
the vector representation of dissimilar examples should be
further apart. In the case of images, we might treat pictures
of the same concept (such as "dog") as similar.

Let’s establish a framework and notation for contrastive
learning for the rest of the text. It is a simplified version of
that of Le-Khac, Healy and Smeaton (2020).

• We first consider encoders of the input data onto
some vector representation space. The encoders are
parameterized neural networks mapping examples to
d-dimensional vectors ek(⋅; �k) ∶ k → ℝd .
It should be noted that we might have different en-
coders or not. For example, Radford et al. (2021) try
to find common representations for images and text,
where text that describes the image accurately should
be close to the image itself. In this case, they use a dif-
ferent encoder for image and text. On the other hand,
Reimers and Gurevych (2019) learn representations
for text only, and when comparing two examples as
similar or dissimilar, they are encoded through the
same network, with tied weights. These are known as
siamese networks.

• Additionally, we can assume without loss of generality
that a final head maps these representations to a metric
m-dimensional space ℎk(⋅; �k) ∶ ℝd → ℝm, where
the notion of distance or similarity is actually applied.
The addition of a separate transformation to map the
vector representation onto a different metric space
separates the task of learning meaningful features and
forcing similar instances to be close together. Prior to
this addition, many methods found that intermediate
layers of the trained encoder were superior for transfer
learning that the final layer (Le-Khac et al. (2020)).
Notice that if a method didn’t need such a head, we
might assume that these transformations are simply
the identity function.

• The metric is given by a distance or similarity function
ℝm × ℝm → ℝ, such as the Euclidean distance
‖

‖

z1 − z2‖‖ or the cosine similarity ⟨z1,z2⟩
‖

‖

z1‖‖‖‖z2‖‖
. A similar-

ity function takes larger values for similar examples,
and will be denoted by s, whereas distance functions,
denoted by d, are bounded by zero and take smaller
values for similar instances.

• A loss function  is built using this similarity notion
for a set of encoded examples {ℎki (eki (xi))}ni=1, penal-
izing large distances for similar instances, and small
distances for dissimilar examples. Loss functions are
further discussed in section 4.

• Finally, given an example x ∈  , we will denote by
v = e(x) its vector representation, and by z = ℎ(v) its
embedding onto the metric space. Instances that we
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consider similar to an anchor example x will be called
positive examples and be denoted by a plus superscript
x+. We define negative examples analogously and
denote them by a minus superscript x−.

4. Contrastive losses
There is a long history of loss functions used for con-

trastive learning. The aim of this section is to provide an
overview and discussion of some of this functions, both the
classical ones and the more modern ones used to train state-
of-the-art models.

Let x ∈  be an example and z = ℎ(e(x)) its embedding
in the metric space. The pair loss is defined for pairs of exam-
ples, differing for positive and negative examples (Chopra,
Hadsell and LeCun, 2005):

{

(x, x+) = D(z, z+)2

(x, x−) = max(0, " −D(z, z−)2),
(1)

where D is some distance function such as the Euclidean
distance. By minimizing this expression, the distance to
positive samples should be close to zero, and dissimilar
instances should be separated by a margin of at least ".

The triplet loss requires instead that the distance with a
positive example and the distance with a negative example
differ at least by a margin " (Schroff, Kalenichenko and
Philbin, 2015):

(x, x+, x−) = max(0, D(z, z+)2 −D(z, z−)2 + "). (2)
In this last loss function, a full training example requires

now both a similar and a dissimilar instance. However, the
interaction between different examples is still very limited.
It has been shown theoretically and empirically that the use
of negative examples, specially those that are hard for the
model, are crucial for a good and efficient learning process
(Le-Khac et al., 2020). Further discussion on the importance
and problems of using negative samples is found in section 6.
Here, it suffices to know that using several negative examples
at once is more informative for the model and increases the
chances of drawing examples that are hard.

Increasing the number of interactions between instances
at once, Song, Xiang, Jegelka and Savarese (2016) proposed
the Lifted Embedding loss. Let {xi}ni=1 be a set of examples,
and P and N the set of pairs of examples that are considered
similar and dissimilar, respectively. Then the loss function is
given as

(N,P ) = 1
2|P |

∑

(i,j)∈P
L2
i,j , (3)

where

Li,j = Di,j + log

(

∑

(i,k)∈N
e"−Di,k +

∑

(j,l)∈N
e"−Dj,l

)

,

and Di,j = D(zi, zj). The expression for Li,j is actually used
because it is a smooth upper bound for

L̂i,j = Di,j +max
(

max
(i,k)∈N

" −Di,k, max
(j,l)∈N

" −Dj,l

)

,

so this loss can be interpreted as an adaptation to the triplet
loss, trying to mine the hardest negative example of the set
for each positive pair, and squaring after the difference of
distances. As usual in deep learning, instead of using the
full set of examples, the loss is approximated with a batch
of smaller size.

Let’s now take a probabilistic perspective. If P (⋅|x1, x2)is the Bernoulli probability distribution function of x1 and
x2 being similar, we might approximate this distribution as

P (1|x1, x2) = �(s(z1, z2)), (4)
where � is the sigmoid function. If p+(⋅, ⋅) and p−(⋅, ⋅) are the
probability distribution functions of similar and dissimilar
instances, respectively, then the Binary Noise-Contrastive
Estimation (NCE) loss (Gutmann and Hyvärinen, 2010) is
given by minimizing the expected negative log-likelihood:

Bin−NCE = −Ep+ logP (1|x1, x2)

− Ep− log
(

1 − P (1|x1, x2)
)

, (5)
where the expected value would be approximated by its
population mean (e.g. with a single batch). Keeping the
previous notation, this yields:

Bin−NCE = − 1
|P |

∑

(i,j)∈P
log �(s(zi, zj))

− 1
|N|

∑

(i,j)∈N
log

(

1 − �(s(zi, zj))
)

. (6)

A more recent loss function is InfoNCE (van den Oord,
Li and Vinyals, 2019). In their setting, instead of considering
a binary classification problem they assume a ranking one.
Having fixed an instance x, let S = {x+0 , x

−
1 ,… , x−n } be a

set of possible similar instances, where only x+0 is a positive
example. The problem becomes one of ranking which exam-
ple is more likely to be positive. The probability of each of
the samples can be approximated by a softmax operation on
a similarity score with respect to x:

P (i|x, S) =
exp

(

s(x, xi)
)

∑n
j=0 exp

(

s(x, xj)
) . (7)

Minimizing the negative log-likelihood of the true positive
yields:

InfoNCE = −E log
exp

(

s(x, x+0 )
)

∑n
j=0 exp

(

s(x, xj)
) . (8)

As we will see, it is a common setting to have batches
of pairs of similar instances {(x1, x′1),… , (xn, x′n)}, where
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instances across pairs are considered to be dissimilar. We
can compute a similarity matrix S = (s(zi, z′j))i,j , where
the main diagonal values should be high and the rest should
be low. In this case, one can calculate the InfoNCE across
rows or columns. It is also possible to average both options,
yielding a symmetric InfoNCE loss.

A temperature parameter � can be included in the sotf-
max operation (see e.g. (Chen, Kornblith, Norouzi and Hin-
ton, 2020)), transforming Equation 7 into

P (i|x, S) =
exp

(

s(x, xi)∕�
)

∑n
j=0 exp

(

s(x, xj)∕�
) . (9)

A small value of � makes the softmax sharper, and small
differences between the similarity of positive and negative
examples already produces a high likelihood. A large value
of � forces the difference in similarity to be large. This
parameter can be viewed as the margin parameter in previous
functions. This modified InfoNCE loss is termed NT-Xent
(normalized temperature-scaled cross entropy loss) (Chen
et al., 2020).

Some work has also been done with loss functions based
on the concept of mutual information. A compilation of such
work is left as a possible extension for the assignment for the
“Seminars” class.

5. Data generation for contrastive learning
This section gives an overview of different ways to gen-

erate data for contrastive learning, based on (Le-Khac et al.,
2020, Section III-B). While contrastive learning is generally
agnostic to the supervision level paradigm, it is widely used
for self-supervised learning. Thus, the techniques used to
automatically generate data for a pretext task are of particular
importance.
5.1. Human supervision

A possible approach to acquire data involves human
annotation. For instance, Chi, Dong, Wei, Yang, Singhal,
Wang, Song, Mao, Huang and Zhou (2021) leveraged sen-
tence pairs in different languages to obtain cross-lingual
language representations. In this context, sentences with
similar meanings, representing translations of the same sen-
tence, are deemed analogous, whereas sentences with dis-
tinct meanings are categorized as dissimilar. Radford et al.
(2021) employed pairs comprising images and correspond-
ing textual descriptions. Any remaining potential combina-
tions of text and images are regarded as negative or non-
analogous examples.

Securing extensive labeled datasets for this purpose is
not always straightforward, particularly in the context of
massive deep learning models. Under such circumstances,
it is possible to resort to alternative forms of self-supervised
pre-training for the encoders.
5.2. Data augmentation

One of the most common techniques in self-supervised
learning is data augmentation. In the particular context of

contrastive learning, a transformation that does not change
the instance semantically is applied to generate positive
examples. To illustrate this, assume that we are contrasting
images, and we want to map images based on the concepts
inside them. Then if we crop, blur, or saturate the color
of an image of a cat, it is still an image of a cat. This
way, augmentations of similar or equal instances are also
similar, whereas augmentations of dissimilar examples are
also dissimilar.

To avoid any supervision, it is common to assume that
each example in our dataset conforms its own class, and that
it is dissimilar to all other instances. This particular task has
been termed instance-level discrimination (Wu, Xiong, Yu
and Lin, 2018). Of course, this might not always hold. We
may have multiple pictures of similar cats in our dataset.
We expect, however, that it is unlikely to draw many false
negatives in a batch.

In the case of images, we find transformations such
as rotations, translations, cutouts, cropping and resizing,
blurring, applying noise... These techniques are applied in
(Chen et al., 2020).

Textual data is a bit more complex. Fang, Wang, Zhou,
Ding and Xie (2020) use automatic back-translation, that is,
translation to a different language and then back to the source
language, to generate pairs of different but semantically
equivalent segments of text. Many other techniques can be
used: changing characters, masking words, adding noise,
changing words for synonyms... An extensive survey of
method can be found in (Bayer, Kaufhold and Reuter, 2023).

Careful exploration of data augmentation techniques can
be very important. For example, (Chen et al., 2020) found
that the training of SimCLR was very sensitive to the choice
of data augmentation techniques.
5.3. Other data generation techniques

There are several other approaches to generate data for
contrastive learning. For example, one can capture different
perspectives of the same information simultaneously. This
is the case when using multiple camera angles to capture
images at the same moment, or the combination of audio
and images from the same video.

In the case of input data that can be decomposed as
a series of local features, one can exploit the relationship
between these features and a global representation of the
instance. In this setting, the local and global representations
of the same instance are deemed as similar, whereas those
of different instances as dissimilar. For example, Deep In-
foMax (Hjelm, Fedorov, Lavoie-Marchildon, Grewal, Bach-
man, Trischler and Bengio, 2019) was trained using this
technique for images. A high level overview can be seen in
subsection 5.3.

Finally, some data domains can be decomposed into a
sequence of smaller units that have some consistency. In the
case of videos, the images usually present some continuity
throughout the time dimension. We can take images that are
close in time as similar examples, and images that are far
apart as dissimilar examples.
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Figure 1: Production of positive and negative examples to
train Deep InfoMax, figure taken from (Hjelm et al., 2019).
The green box comes from an image of a dog, and the red box
from an image of a leopard. The local features of the dog are
aggregated into a global representation. The local and global
features of the dog are similar, and the global features of the
dog and the local features of the leopard are dissimilar.

6. Discussion on negative examples
We have seen in section 4 that most loss functions use

both positive and negatives examples. There is a simple
theoretical reason for this: if negative examples were not
used, a trivial representation mapping everything to one
vector would obtain perfect performance.

Further, there is empirical evidence that performance is
increased from comparison to many negative examples (Le-
Khac et al., 2020). For example, Chen et al. (2020) found
that training with very large batch sizes greatly improved
performance. In their setting, the batch size was tied to the
number of negative examples for each positive example.

There are several topics discussed around the usage and
generation of negative examples in contrastive learning, and
this section provides an overview of some of them.
6.1. False negatives in self-supervised contrastive

learning
In section 5, we already hinted at the possibility of false

negatives when there is no supervision. This is because we
are drawing from the full distribution of examples instead of
the distribution of negative examples, creating a bias. Some
work has been done on correcting this while not requiring
manual labels for negatives. For example, Chuang, Robin-
son, Lin, Torralba and Jegelka (2020) proposed the Debiased
Contrastive loss, sampling even more positive examples to
correct this bias. The Debiased Contrastive loss improved
performance in the presence of false negatives, but increased
the computational cost of the loss function by also requiring
several samples of similar instances.

6.2. Alleviating hardware bottlenecks for large
amounts of negative samples

We have seen the use of examples in the same batch
as negatives. This presents a major drawback in terms of
computing resources. If we want to use many negative
examples, we are forced to use a very large batch size.
Some work has been done on decoupling batch size and the
number of negatives by sampling negatives from an offline
memory bank. In this setting, an encoded representation is
kept on-disk for some or all examples, and the loss function
is not back-propagated through them. The main difference
between approaches lies in the method to keep these offline
representations updated as the encoder is optimized.

Wu et al. (2018) sampled negative representations ran-
domly from a memory bank with the full dataset. As the
encoder is updated, the samples in the memory bank get
outdated. At the end of each epoch, all the representations
in the memory bank are updated with the new checkpoint of
the model.

He, Fan, Wu, Xie and Girshick (2020) proposed keeping
a queue with a fixed number of mini-batches. After pro-
cessing a mini-batch, the new examples are added to the
queue, and the oldest mini-batch is removed. The queue is
used to sample negative examples for the current mini-batch.
Since this alone resulted in poor empirical performance,
they separated the online encoder that is being trained from
an offline encoder that produces the representations for the
queue. The parameters of the offline encoder are updated
through a momentum update rule with the parameters of the
online one:

�off ← ��off + (1 − �)�on, � ∈ [0, 1). (10)
This smoother update yielded better empirical performance.
6.3. Hard negative mining

While increasing the number of negative examples has
been observed to improve performance, this might be due to
the increased probability of finding meaningful negatives to
learn from. These examples should be hard for the model,
that is, their embedding should lie fairly close to the consid-
ered instance despite being negative.

Some work has been done on using a more careful
selection of negative examples. For example, Kalantidis,
Sariyildiz, Pion, Weinzaepfel and Larlus (2020) proposed
an approach where the closest negative examples are drawn.
They use feature space mixing techniques to generate even
more negative examples.

However, hard negative mining has some disadvantages,
such as the increased time complexity from sampling close
neighbours and the increased probability of drawing false
negatives in the self-supervised setting as the encoder gets
better.
6.4. Are negative examples really necessary?

If the only reason to use negative examples is to prevent
the representation from collapsing onto one single vector,
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then other techniques to prevent it could allow us to remove
negative examples.

Of particular importance seems to be the work by Grill,
Strub, Altché, Tallec, Richemond, Buchatskaya, Doersch,
Avila Pires, Guo, Gheshlaghi Azar, Piot, kavukcuoglu,
Munos and Valko (2020). They used two neural networks, an
online (predictive) network and a target network. They use
only positive examples, and for those the online network tries
to predict the metric representation from the target network.
The parameters of the target network are updated after every
iteration with an exponential moving average of the online
parameters:

�target ← ��target + (1 − �)�online.

It is not obvious to me that this approach would work. The
authors argue that since the update to the target parameters
is not exactly according to the gradient of the loss with
respect to �target, there is no a priori reason to believe that the
target network would converge to a collapsed representation.
The authors did get good performance in downstream image
classification tasks. There is some discussion on informal
mediums (see blog post (Fetterman and Albrecht, 2020) and
preprint (Richemond, Grill, Altché, Tallec, Strub, Brock,
Smith, De, Pascanu, Piot and Valko, 2020)) on whether batch
normalization is the cause of preventing representational
collapse, but I haven’t found peer-reviewed work on the
topic.

7. Applications
In this section, we explore how contrastive learning is

used in producing state-of-the-art models through a more
detailed explanation of three seminal papers.
7.1. Sentence-Bert

Reimers and Gurevych (2019) introduced Sentence-
BERT. BERT (Devlin et al., 2019) is a language encoder-
only transformer-based model. It learned a representation
of the input text not by contrastive learning, but by two
pretext tasks known as Maked Language Modeling and Next
Sentence Prediction. BERT admits pairs of texts as input,
which allows it to perform tasks such as Semantic Textual
Similarity or Natural Language Inference on the two input
texts. However, when it is necessary to perform a task for
each pair in a large set of texts, the time complexity of
executing the model becomes prohibitive.

In contrast, Sentence-BERT overcomes this by using a
BERT encoder to obtain a vector representation out of each
of the input texts. The same network (with tied weights)
is applied to each text, and the individual representations
are combined in a simple head to obtain the output. They
used the following heads and objective functions, for pairs
of representations u and v:

• Classification objective. A linear transformation of
the concatenated (u, v, |u− v|), combined with a soft-
max layer for classification. A classification loss can
then be applied.

• Regression objective. Cosine similarity of u and v.
• Triplet objective. As seen in section 4.
They fine-tuned the BERT encoder with these objectives

on downstream tasks with supervised data. The obtained
representations had great performance on Semantic Textual
Similarity. With this approach, the task of finding the most
similar sentence pair in a set of 10000 sentences from 65
hours to approximately 5 seconds. Instead of computing
pair-wise embeddings, they compute a single embedding for
each text and compare them using cosine-similarity. Further,
the obtained embeddings for each text can take advantage
of advanced index structures for fast k-NN approximations.
However, for more complex tasks such as Natural Language
Inference, the performance is worse than the original BERT
approach.
7.2. SimCLR

Chen et al. (2020) showed a state-of-the-art contrastive
learning approach for image representation learning.

They used a ResNet-50 deep learning architecture to
obtain the representation of the image, followed by a small
MLP network of one hidden non-linear layer to produce
the embedding in a metric space. In the metric space, the
NT-Xent loss from section 4 is used. By applying data
augmentation, they obtain two similar images from the orig-
inal one. They considered every other image in the batch
to be dissimilar. A diagram of this approach is shown in
subsection 7.2.

Figure 2: Diagram of the SimCLR training approach, taken
from (Chen et al., 2020).  is the data augmentation function.
Each example then goes through a ResNet-50 encoder f , and
then a final projection MLP head g. In the final metric space,
the agreement is measured.

The key ingredients were:
• Strong data augmentation. They found that results

were very sensitive to the data augmentation strategy.
Particularly effective was the composition of random
crop and resize, color distortions and Gaussian blur.
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• Use of a projection head. The obtained representa-
tions from the main architecture (ResNet) were much
better than without the projection head, that is, using
the representation space as a metric space as well.

• Large batch size. Large batch sizes were very impor-
tant for performance, specially with a small number of
training epochs. The best results seem to be obtained
from batches of 4096, that is, 8192 negative examples
per batch.

With this approach, they achieved state-of-the-art per-
formance in self-supervised, semi-supervised (using 1% and
10% of labeled data) and transfer learning. Further, a linear
classifier trained on the representations of SimCLR obtained
competitive performance with fully-supervised models on
ImageNet, albeit with four times the model size.
7.3. CLIP

Radford et al. (2021) proposed CLIP. They jointly trained
an image encoder (ResNet or a Vision Transformer) and
a text transformer-based encoder. They created a dataset
of 400 million pairs of images and captions describing the
images. For a batch size of N pairs, they trained using the
symmetric InfoNCE loss. Each batch contained N positive
pairs of corresponding images and captions, while the N2 −
N remaining possible pairs are considered negative.

The text interface due to training with natural language is
the best feature, since it allows zero-shot application to many
classification datasets. By comparing with textual labels we
can perform multi-class classification on arbitrary classes.

On image classification, CLIP achieves competitive
performance with a fully supervised, regularized, logistic
regression classifier on the representation generated by a
ResNet50 architecture. This is well below state-of-the-art
performance, but it is nonetheless impressive given that
no fine-tuning was involved. The worst performance is ob-
tained, as expected, on very niche categories such as lymph
node tumor detection. CLIP appears to be able to perform
tasks like geo-localization, Optical Character Recognition,
facial emotion recognition and action recognition.

8. Conclusions
Contrastive learning has solidified its position as a po-

tent paradigm in the realm of deep learning, especially in
the extraction of feature-rich representations across various
modalities such as images, audio, video, and text. We have
seen many advantages of representation learning in general:
the ability to overcome scarcity of data for downstream
tasks, the ability to train massive deep learning models that
generalize well and do not learn spurious correlations, the
zero-shot capabilities... For contrastive learning in partic-
ular, we have seen with Sentence-BERT the performance
advantage for certain tasks of learning semantic embeddings
in metric spaces. However, we still see many challenges and
limitations of these techniques:

• Resource Intensity: One of the most significant chal-
lenges is the enormous amounts of data, compute, and
energy required for training. Such resource intensive-
ness makes it inaccessible for many. More particularly,
contrastive learning benefits from large batch sizes,
posing even bigger hardware challenges than other
techniques for representation learning.

• Zero-shot Performance: While models like CLIP ex-
hibit zero-shot capabilities, their performance is often
subpar compared to specialized models, especially
without fine-tuning.

• Design Sensitivity: The training of models can be very
sensitive to design parameters. For example, SimCLR
is highly sensitive to the choice of data augmentation
techniques.

• False Negatives: In self-supervised contrastive learn-
ing, the assumption that each example belongs to
its unique class can lead to the challenge of false
negatives, as we have seen. Existing solutions have
not been widely adopted to the best of my knowledge.
This is probably due to the increased complexity and
reduced performance.

Contrastive learning has reshaped representation learn-
ing, but it’s not without challenges. Its benefits and lim-
itations highlight the need for ongoing research. As the
deep learning field evolves, it’s crucial for the community to
address these challenges, ensuring that contrastive learning
remains impactful and relevant in the broader AI landscape.

References
Bayer, M., Kaufhold, M.A., Reuter, C., 2023. A Survey on Data Aug-

mentation for Text Classification. ACM Computing Surveys 55, 1–39.
doi:10.1145/3544558.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-
Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler,
D., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M.,
Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford,
A., Sutskever, I., Amodei, D., 2020. Language Models are Few-
Shot Learners, in: Advances in Neural Information Processing Systems,
Curran Associates, Inc.. pp. 1877–1901.

Chen, T., Kornblith, S., Norouzi, M., Hinton, G., 2020. A Simple Frame-
work for Contrastive Learning of Visual Representations, in: Proceed-
ings of the 37th International Conference on Machine Learning, PMLR.
pp. 1597–1607.

Chi, Z., Dong, L., Wei, F., Yang, N., Singhal, S., Wang, W., Song, X.,
Mao, X.L., Huang, H., Zhou, M., 2021. InfoXLM: An Information-
Theoretic Framework for Cross-Lingual Language Model Pre-Training,
in: Proceedings of the 2021 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Association for Computational Linguistics, Online. pp.
3576–3588. doi:10.18653/v1/2021.naacl-main.280.

Chopra, S., Hadsell, R., LeCun, Y., 2005. Learning a Similarity Met-
ric Discriminatively, with Application to Face Verification, in: 2005
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR’05), IEEE, San Diego, CA, USA. pp. 539–546.
doi:10.1109/CVPR.2005.202.

Pablo Miralles: Preprint submitted to David Camacho Page 7 of 9

http://dx.doi.org/10.1145/3544558
http://dx.doi.org/10.18653/v1/2021.naacl-main.280
http://dx.doi.org/10.1109/CVPR.2005.202


Contrastive Learning

Chuang, C.Y., Robinson, J., Lin, Y.C., Torralba, A., Jegelka, S., 2020.
Debiased Contrastive Learning, in: Advances in Neural Information
Processing Systems, Curran Associates, Inc.. pp. 8765–8775.

Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2019. BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding, in:
Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers), Association for
Computational Linguistics, Minneapolis, Minnesota. pp. 4171–4186.
doi:10.18653/v1/N19-1423.

Fang, H., Wang, S., Zhou, M., Ding, J., Xie, P., 2020. CERT: Contrastive
Self-supervised Learning for Language Understanding. doi:10.48550/
arXiv.2005.12766, arXiv:2005.12766.

Fetterman, A., Albrecht, J., 2020. Understanding self-supervised and
contrastive learning with "Bootstrap Your Own Latent" (BYOL).
https://imbue.com/research/2020-08-24-understanding-self-supervised-
contrastive-learning/#our-surprising-results.

Grill, J.B., Strub, F., Altché, F., Tallec, C., Richemond, P., Buchatskaya,
E., Doersch, C., Avila Pires, B., Guo, Z., Gheshlaghi Azar, M., Piot,
B., kavukcuoglu, k., Munos, R., Valko, M., 2020. Bootstrap Your Own
Latent - A New Approach to Self-Supervised Learning, in: Advances
in Neural Information Processing Systems, Curran Associates, Inc.. pp.
21271–21284.

Gutmann, M., Hyvärinen, A., 2010. Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models, in: Proceedings
of the Thirteenth International Conference on Artificial Intelligence and
Statistics, JMLR Workshop and Conference Proceedings. pp. 297–304.

He, K., Fan, H., Wu, Y., Xie, S., Girshick, R., 2020. Momentum Contrast
for Unsupervised Visual Representation Learning, in: 2020 IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR),
IEEE, Seattle, WA, USA. pp. 9726–9735. doi:10.1109/CVPR42600.2020.
00975.

Hjelm, R.D., Fedorov, A., Lavoie-Marchildon, S., Grewal, K., Bachman,
P., Trischler, A., Bengio, Y., 2019. Learning deep representations by
mutual information estimation and maximization, in: 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019, OpenReview.net.

Kalantidis, Y., Sariyildiz, M.B., Pion, N., Weinzaepfel, P., Larlus, D.,
2020. Hard Negative Mixing for Contrastive Learning, in: Advances
in Neural Information Processing Systems, Curran Associates, Inc.. pp.
21798–21809.

Kumar, P., Rawat, P., Chauhan, S., 2022. Contrastive self-supervised
learning: Review, progress, challenges and future research directions.
International Journal of Multimedia Information Retrieval 11, 461–488.
doi:10.1007/s13735-022-00245-6.

Le-Khac, P.H., Healy, G., Smeaton, A.F., 2020. Contrastive Representation
Learning: A Framework and Review. IEEE Access 8, 193907–193934.
doi:10.1109/ACCESS.2020.3031549.

van den Oord, A., Li, Y., Vinyals, O., 2019. Representation Learning with
Contrastive Predictive Coding. arXiv:1807.03748.

Radford, A., Kim, J.W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S.,
Sastry, G., Askell, A., Mishkin, P., Clark, J., Krueger, G., Sutskever, I.,
2021. Learning Transferable Visual Models From Natural Language
Supervision, in: Proceedings of the 38th International Conference on
Machine Learning, PMLR. pp. 8748–8763.

Reimers, N., Gurevych, I., 2019. Sentence-BERT: Sentence Embeddings
using Siamese BERT-Networks, in: Proceedings of the 2019 Confer-
ence on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), Association for Computational Linguistics, Hong
Kong, China. pp. 3982–3992. doi:10.18653/v1/D19-1410.

Richemond, P.H., Grill, J.B., Altché, F., Tallec, C., Strub, F., Brock, A.,
Smith, S., De, S., Pascanu, R., Piot, B., Valko, M., 2020. BYOL works
even without batch statistics. arXiv:2010.10241.

Schroff, F., Kalenichenko, D., Philbin, J., 2015. FaceNet: A unified embed-
ding for face recognition and clustering, in: 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), IEEE, Boston, MA,
USA. pp. 815–823. doi:10.1109/CVPR.2015.7298682.

Song, H.O., Xiang, Y., Jegelka, S., Savarese, S., 2016. Deep Metric Learn-
ing via Lifted Structured Feature Embedding, in: 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), IEEE, Las Vegas,
NV, USA. pp. 4004–4012. doi:10.1109/CVPR.2016.434.

Weng, L., 2021. Contrastive representation learning. lilianweng.github.io .
Wu, Z., Xiong, Y., Yu, S.X., Lin, D., 2018. Unsupervised Feature Learning

via Non-parametric Instance Discrimination, in: 2018 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, IEEE, Salt Lake
City, UT. pp. 3733–3742. doi:10.1109/CVPR.2018.00393.

A. Bibliography analysis
A.1. Methodology

To find relevant work about the topic I used primarily
three secondary sources. The main one is the survey (Le-
Khac et al., 2020). I also included some articles from the
seminar by Javier Huertas-Tato and from the recommended
reading from the seminar (Weng, 2021). After compiling a
good amount of papers, I also used the ResearchRabbit and
Inciteful applications to find relevant and related papers to
the ones I already had, without much success.
A.2. Analysis

In tables 1 to 3 we find the different sources cited in
the report as credible, together with some impact metrics.
For journal articles I have included the JCR quartile of
the journal (at the time of publishing) and the number of
citations. For conferences, the core rank (at the earliest time
after publishing) and number of citations are shown. Finally,
for preprints without peer review I only included the number
of citations. We observe the following.

• The secondary sources are the worst ones. The semi-
nar and recommended reading are not peer-reviewed,
and the survey was published in a Q2 journal and has
moderate citations. However, I think that the followed
methodology should be sufficient to discover most of
the relevant literature, and the credibility of primary
sources has been checked as well.

• Further, the used survey is from 2020, fairly old (con-
sidering the pace of progress in deep learning in the
last few years). I have also checked a more recent
survey (Kumar, Rawat and Chauhan, 2022), and used
applications for literature discovery, without finding
very relevant after 2021. This might indicate that the
progress in this field has staled a bit.

• Of the used pre-prints without peer-review, one of
them is highly cited (more than 6000 citations), and
the other has moderate citations (256). In any case, the
last one just served as an example for the use of back-
translation, and was cited in a peer-reviewed survey.

• The remaining journal article has moderate citations
but was published in a very relevant journal (Q1, 3
out of 111 in Computer Science, Theory & Methods).

• Of the conference papers, all of them are either pub-
lished in A* conferences or have more than 1500
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Table 1
Cited conference papers

Entry Year Conference # citations Core rank
Chi et al. (2021) 2021 Annual Conference of the North American

Chapter of the Association for Computa-
tional Linguistics

245 A

Radford et al. (2021) 2021 International Conference on Machine
Learning

8651 A*

Chen et al. (2020) 2020 International Conference on Machine
Learning

12601 A*

Grill et al. (2020) 2020 Advances in Neural Information Processing
Systems

4559 A*

Chuang et al. (2020) 2020 Advances in Neural Information Processing
Systems

412 A*

Kalantidis et al. (2020) 2020 Advances in Neural Information Processing
Systems

440 A*

Brown et al. (2020) 2020 Advances in Neural Information Processing
Systems

15354 A*

He et al. (2020) 2020 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)

8835 A

Devlin et al. (2019) 2019 Annual Conference of the North American
Chapter of the Association for Computa-
tional Linguistics

80335 A

Hjelm et al. (2019) 2019 International Conference on Learning Rep-
resentations (ICLR)

2414 A*

Reimers and Gurevych (2019) 2019 Conference on Empirical Methods in Nat-
ural Language Processing & International
Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP)

7076 A, B

Wu et al. (2018) 2018 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)

3097 A

Song et al. (2016) 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)

1735 A

Schroff et al. (2015) 2015 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)

14997 A

Gutmann and Hyvärinen (2010) 2010 International Conference on Artificial Intel-
ligence and Statistics

2110 B

Chopra et al. (2005) 2005 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR)

4780 A

citations, except for (Chi et al., 2021). This last paper
has moderate citations (245) and was published in a
Core rank A conference.

• Although I haven’t performed an exhaustive analysis
of authors, we see some big names such as Yoshua
Bengio, Yann LeCun, Geoffrey Hinton, Alec Radford,
Oriol Vinyals,...

In general, I think the selected primary sources are very
reputable. We see many papers with an exceptionally high
number of citations, and many published in top conferences
such as NeurIPS.
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Table 2
Cited journal articles

Entry Journal year # citations Quartile
Bayer et al. (2023) ACM Computing Surveys 2023 171 Q1 (3/111 Computer Science, The-

ory & Methods)
Le-Khac et al. (2020) IEEE Access 2020 381 Q2 (65/161 Computer Science, In-

formation Systems)

Table 3
Cited ArXiv preprints

Entry Year # citations
Fang et al. (2020) 2020 256
van den Oord et al. (2019) 2018 6256
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