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What do we mean by representation?

• Internal layers outputs can be viewed as different views or
representations of the input data.
• They contain meaningful features for the task.
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Why should we learn representations?

• The possibility of transfer learning.
• Train for a complex pretext task to obtain a very general
representation of the input data.
• Keep encoder, change head and fine-tune and use for
downstream tasks.
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• Outsource compute resources for training
• Better generalization
• Zero-shot capabilities
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Why should we learn representations?

1. We might not have enough data for the downstream task. We
select pretext tasks for which we can generate data easily.
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Why should we learn representations?

1. People with greater resources can pre-train and upload
weights. We can download and fine-tune for any task we want.
If the encoder weights are frozen, it is much cheaper: we only
update a smaller head. This allows people with fewer resources
to use bigger models than they could otherwise.
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Why should we learn representations?

1. If the data for the downstream task is not representative, we
might learn spurious correlations. By pre-training for a complex
task with rich data, we make sure the model understand the
latent distribution correctly. Still, fine-tuning might lead to
representational collapse.
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Why should we learn representations?

1. For example, ChatGPT (see e.g. text classification, text
transformations, code generation, code analysis...) or CLIP
(zero-shot image classification with arbitrary classes).
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• Massive compute requirements
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Why should we not learn representations?

1. If downstream task is very simple and the data is decent, we
just don’t need to.
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Why should we not learn representations?

1. It is very expensive and not everyone can pre-train massive
deep learning models.
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Why should we not learn representations?

1. Without fine-tuning, models that can perform zero-shot
predictions are unlikely to perform very well.
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Contrastive learning: learn by comparison
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Contrastive learning: learn by comparison

• Go over full diagram.
• Input data might be of different modalities.
• For data of the same modality, we can use the same encoder
and head with tied weights.



Examples of distance and similarity

• Euclidean distance d(z1, z2) = ‖z1 − z2‖
• Cosine similarity s(z1, z2) = 〈z1,z2〉

‖z1‖·‖z2‖
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Examples of distance and similarity
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Pair loss1

L(x, x+) = D(z, z+)2

L(x, x−) = max(0, ε− D(z, z−)2),

Loss function for
positive examples

1Chopra, Hadsell, and LeCun, “Learning a Similarity Metric Discriminatively,
with Application to Face Verification” .
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Pair lossa

aChopra, Hadsell, and LeCun, “Learning a Similarity Metric Discriminatively,
with Application to Face Verification” .• Different for positive and negative examples.

• Explain plot.
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Pair loss

• Dissimilar instances separated by margin ε.



Triplet loss4

L(x, x+, x−) = max(0,D(z, z+)2 − D(z, z−)2 + ε)

positive dist

margin

4Schroff, Kalenichenko, and Philbin, “FaceNet: A Unified Embedding for Face
Recognition and Clustering” . 11
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Triplet lossa

aSchroff, Kalenichenko, and Philbin, “FaceNet: A Unified Embedding for Face
Recognition and Clustering” .• Distance between similar and dissimilar instances separated by

margin.



Lifted Structured Loss7

{xi}ni=1 = set of examples

P = {pairs of similar instances} N = {pairs of dissimilar instances}

L(N,P) = 1
2|P|

∑
(i,j)∈P

L2i,j

Li,j = Di,j + log

 ∑
(i,k)∈N

eε−Di,k +
∑

(j,l)∈N

eε−Dj,l


Di,j = D(zi, zj)

7Song et al., “Deep Metric Learning via Lifted Structured Feature
Embedding” .
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Lifted Structured Loss

• We are actually penalizing the small differences between the
distance with a positive example and the hardest negative
example, up to some margin, similar to the triplet loss.



Binary Noise-Contrastive Estimation7

X(x1, x2) =

1 if x1 and x2 are similar

0 if x1 and x2 are dissimilar

X(x1, x2) ∼ P(·|x1, x2) → P(1|x1, x2) = σ(s(z1, z2))

LBin−NCE = −Ep+ log P(1|x1, x2)− Ep− log(1− P(1|x1, x2)) ≈

− 1
|P|

∑
(i,j)∈P

log σ(s(zi, zj))−
1
|N|

∑
(i,j)∈N

log
(
1− σ(s(zi, zj))

)

7Gutmann and Hyvärinen, “Noise-Contrastive Estimation: A New Estimation
Principle for Unnormalized Statistical Models” .
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Binary Noise-Contrastive Estimationa

aGutmann and Hyvärinen, “Noise-Contrastive Estimation: A New Estimation
Principle for Unnormalized Statistical Models” .• Explain probabilistic approach and population sample with

batch.



InfoNCE8

x; S = {x+0 , x
−
1 , . . . , x

−
n } → rank the positive one!

P(i|x, S) = exp(s(x, xi))∑n
j=0 exp

(
s(x, xj)

)
LInfoNCE = −E log

exp
(
s(x, x+0 )

)∑n
j=0 exp

(
s(x, xj)

)
8Oord, Li, and Vinyals, Representation Learning with Contrastive Predictive
Coding .
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InfoNCEa

aOord, Li, and Vinyals, Representation Learning with Contrastive Predictive
Coding .• Instance x, examples S, only x+0 positive.



InfoNCE: example setting

B = {(x0, x′0), (x1, x′1), . . . , (xn, x′n)} → softmax(s(zi, z′j))

0.31 0.03 0.06 0.06 0.40 0.15

0.00 0.93 0.04 0.01 0.02 0.01

0.12 0.50 0.13 0.03 0.12 0.10

0.32 0.05 0.04 0.35 0.21 0.04

0.01 0.03 0.00 0.01 0.94 0.01

0.02 0.01 0.07 0.02 0.16 0.72
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InfoNCE: example setting

• Batches of pairs of similar instances {(x1, x′1), . . . , (xn, x′n)}.
• Instances across pairs are considered to be dissimilar.
• We can compute a similarity matrix S = (s(zi, z′j))i,j, where the
main diagonal values should be high and the rest should be low.
• We can calculate the InfoNCE across rows or columns. It is also
possible to average both options, yielding a symmetric InfoNCE
loss.



NT-Xent11

LNT−Xent = −E log
exp

(
s(x, x+0 )/τ

)∑n
j=0 exp

(
s(x, xj)/τ

)

x0=0.2 x1=0.4 x2=0.3
0.0

0.2

0.4

0.6

0.8

1.0
Softmax with =0.1

x0=0.2 x1=0.4 x2=0.3
0.0

0.2

0.4

0.6

0.8

1.0
Softmax with =1

x0=0.2 x1=0.4 x2=0.3
0.0

0.2

0.4

0.6

0.8

1.0
Softmax with =10

11Chen et al., “A Simple Framework for Contrastive Learning of Visual
Representations” .
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NT-Xenta

aChen et al., “A Simple Framework for Contrastive Learning of Visual
Representations” .• A small value of τ makes the softmax sharper, and small

differences between the similarity of positive and negative
examples already produces a high likelihood.
• A large value of τ forces the difference in similarity to be large.
• This parameter can be viewed as the margin parameter in
previous functions.



Generating data

Generating data

20
23
-1
0-
23

Representation Constrastive Learning
Generating data



Generating data for contrastive learning

Data = pairs of positive and negative examples.

• Human supervision.
• Data augmentation.
• Multi-sensor input.
• Local-global relationship.
• Sequential coherence/consistency.
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Generating data for contrastive learning



Human supervision

Costly and painful!
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Human supervision

Specially for massive NN models



Data augmentation

Small modifications that don’t alter anything meaningful.

↓
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Data augmentation

• Augmented versions of similar instances are similar.
• Augmented versions of dissimilar instances are dissimilar.



Data augmentation

• Images. Rotations, translations, cutouts, cropping,
resizing...
• Text. More complex. E.g. back-translation, masking words,
adding noise...

Remark: performance can be highly sensitive to data
augmentation strategies .
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Data augmentation



Multi-sensor input

Video (audio and image), multiple cameras, cameras and other
sensors...
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Multi-sensor input



Local-global relationship

Local and global features should be similarly represented.

Figure 1: Local-global relationship in images15

15Hjelm et al., “Learning Deep Representations by Mutual Information
Estimation and Maximization” .
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Local-global relationship

The green box comes from an image of a dog, and the red box from
an image of a leopard. The local features of the dog are aggregated
into a global representation. The local and global features of the dog
are similar, and the global features of the dog and the local features
of the leopard are dissimilar.
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Figure 2: Example of consistency in videos16

16Sermanet et al., “Time-Contrastive Networks: Self-Supervised Learning
from Video” . 24

Sequential coherence/consistency

Exploit continuity in smaller sub-units.

Figure 2: Example of consistency in videos16

16Sermanet et al., “Time-Contrastive Networks: Self-Supervised Learning
from Video” .

20
23
-1
0-
23

Representation Constrastive Learning
Generating data

Sequential coherence/consistency

For example, in videos, images that are very close in time are likely to
be similar, to contain the same concept. Images far apart in time are
likely to be different.
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The importance of negative samples

• Negative examples prevent representational collapse
f ≡ constant.
• Empirical evidence of better performance.17

Several discussions around the use of negative examples.

17Chen et al., “A Simple Framework for Contrastive Learning of Visual
Representations” .
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False negatives in self-supervision

Improved performance by increasing the number of positive examples
for a given instances, and adding a lot of complexity.
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• Encoding of all samples stored offline.
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Hardware bottlenecks

When and how to update offline encoder/encodings?

• All the samples after each checkpoint.19

• Queue of mini-batches and moving average.20

19Wu et al., “Unsupervised Feature Learning via Non-parametric Instance
Discrimination” .
20He et al., “Momentum Contrast for Unsupervised Visual Representation
Learning” .
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Hardware bottlenecks

• @wu2018UnsupervisedFeature sampled negative
representations randomly from a memory bank with the full
dataset. At the end of each epoch, all the representations in the
memory bank are updated with the new checkpoint of the
model.
• @he2020MomentumContrast use a queue with a fixed number
of mini-batches. After each mini-batch, the new examples are
added, and the oldest mini-batch is removed. The queue is
used to sample negative examples for the current mini-batch.
They separated the online encoder that is being trained from an
offline encoder that produces the representations for the queue
for empirical reasons. The parameters of the offline encoder are
updated through a momentum update rule with the parameters
of the online one.



Hard negative mining

⇑ # negatives =⇒ harder negatives =⇒ performance?

Some work on the topic.21

Increased false negatives?

21Kalantidis et al., “Hard Negative Mixing for Contrastive Learning” .
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Hard negative mining

• What if increasing negatives only improved performance by
having a better chance of drawing hard negatives (negatives
that are close to the instance)?
• Some work on mining hard negatives, that is, trying to select
the hardest negatives to train.
• This increases the chance of false negatives when the encoder
improves, in the self-supervised setting.



Are negative examples really necessary?

Do they only avoid collapse?

Can this be done in a different
way?

Bootstrap Your Own Latent.

θtarget ← α · θtarget + (1− α) · θonline
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Are negative examples really necessary?

• 2 neural networks, an online (predictive) network and a target
network. They use only positive examples, and for those the
online network tries to predict the metric representation from
the target network.
• The parameters of the target network are updated after every
iteration with an exponential moving average of the online
parameters.
• The authors argue that since the update to the target
parameters is not exactly according to the gradient of the loss
with respect to θtarget, there is no a priori reason to believe that
the target network would converge to a collapsed
representation.
• Informal discussion on whether batch normalization plays a
role.
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Figure 4: Sentence-BERT diagram

23Reimers and Gurevych, “Sentence-BERT: Sentence Embeddings Using
Siamese BERT-Networks” .
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Sentence-BERTa

aReimers and Gurevych, “Sentence-BERT: Sentence Embeddings Using
Siamese BERT-Networks” .Explain the difference in approach using the diagrams
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24Chen et al., “A Simple Framework for Contrastive Learning of Visual
Representations” .
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aChen et al., “A Simple Framework for Contrastive Learning of Visual
Representations” .• Go over diagram.

• Other examples in batch assumed negatives.
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• State-of-the-art performance in self-supervised,
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learning for classification tasks.

• Competitive performance with fully-supervised models on
ImageNet (with 4x the model size, but without labeled
data).
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Evaluations using a linear classifier on the learned representation
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